Promptist: reinforcement learning for automatic prompt optimization

News

  • Language models serve as a prompt interface that optimizes user input into model-preferred prompts.
  • Learn a language model for automatic prompt optimization via reinforcement learning.

image

Load Pretrained Model for Stable Diffusion v1.4

You can try the online demo at https://huggingface.co/spaces/microsoft/Promptist.

[Note] the online demo at HuggingFace Space is using CPU, so slow generation speed would be expected. Please load the model locally with GPUs for faster generation.

import gradio as grad
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

def load_prompter():
  prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
  tokenizer = AutoTokenizer.from_pretrained("gpt2")
  tokenizer.pad_token = tokenizer.eos_token
  tokenizer.padding_side = "left"
  return prompter_model, tokenizer

prompter_model, prompter_tokenizer = load_prompter()

def generate(plain_text):
    input_ids = prompter_tokenizer(plain_text.strip()+" Rephrase:", return_tensors="pt").input_ids
    eos_id = prompter_tokenizer.eos_token_id
    outputs = prompter_model.generate(input_ids, do_sample=False, max_new_tokens=75, num_beams=8, num_return_sequences=8, eos_token_id=eos_id, pad_token_id=eos_id, length_penalty=-1.0)
    output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
    res = output_texts[0].replace(plain_text+" Rephrase:", "").strip()
    return res

txt = grad.Textbox(lines=1, label="Initial Text", placeholder="Input Prompt")
out = grad.Textbox(lines=1, label="Optimized Prompt")
examples = ["A rabbit is wearing a space suit", "Several railroad tracks with one train passing by", "The roof is wet from the rain", "Cats dancing in a space club"]

grad.Interface(fn=generate,
               inputs=txt,
               outputs=out,
               title="Promptist Demo",
               description="Promptist is a prompt interface for Stable Diffusion v1-4 (https://huggingface.co/CompVis/stable-diffusion-v1-4) that optimizes user input into model-preferred prompts.",
               examples=examples,
               allow_flagging='never',
               cache_examples=False,
               theme="default").launch(enable_queue=True, debug=True)